



# **IAA300**

Differential Strain Gauge Amplifier

**Sensor Solutions Source** 

Load · Torque · Pressure · Multi-Axis · Calibration · Instruments · Software

www.futek.com

# **Getting Help**

#### **TECHNICAL SUPPORT**

For more IAA300 support, please visit: http://www.futek.com/iaa/support.aspx



#### SP1177

FUTEK reserves the right to modify its design and specifications without notice. Please visit http://www.futek.com/salesterms for complete terms and conditions.

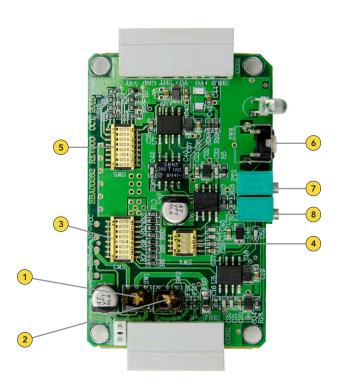
10 Thomas, Irvine, CA 92618 USA

Tel: (949) 465-0900 Fax: (949) 465-0905

www.futek.com

# **Table of Contents**

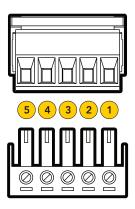
| Getting Help              | 2 | Power Side Connections | ( |
|---------------------------|---|------------------------|---|
| Logic Board Configuration | 4 | Bandwidth Setup        |   |
| Sensor Side Connections   | 5 | Setup Steps            | 6 |


# **Logic Board Configuration**

- **SW** 1 Excitation
- SW 2 Polarity
- SW 3 Gain
- **SW** 4 Bandwidth
- **SW** 5 Shunt Selection
- **SW** 6 Shunt Button
- **SW** 7 Span
- SW 8 Zero






**Note:** Remove the magnetic cover to gain access to the logic board.

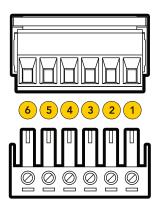


### **Sensor Side Connections**

**IMPORTANT NOTE:** Do not connect the device to the power supply when the power supply is already on.

| SENSOR SIDE |                           |  |  |  |  |
|-------------|---------------------------|--|--|--|--|
| PIN#        | WIRING CODE               |  |  |  |  |
| 1           | SHIELD                    |  |  |  |  |
| 2           | + EXCITATION <sup>1</sup> |  |  |  |  |
| 3           | + SIGNAL                  |  |  |  |  |
| 4           | – SIGNAL                  |  |  |  |  |
| 5           | - EXCITATION¹             |  |  |  |  |




<sup>&</sup>lt;sup>1</sup> For 6 wire sensors, connect +SENSE to +EXCITATION and -SENSE to -EXCITATION.

**Note:** Sensor cable shield connections should be grounded on one end, either the sensor side or the IAA sensor input side, to avoid potential ground loops.

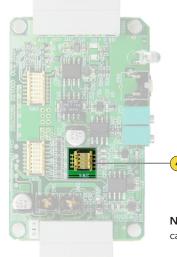
## **Power Side Connections**

**IMPORTANT NOTE:** Do not connect the device to the power supply when the power supply is already on.

| POWER SIDE |             |  |  |  |
|------------|-------------|--|--|--|
| PIN#       | WIRING CODE |  |  |  |
| 1          | + Vin       |  |  |  |
| 2          | Gnd         |  |  |  |
| 3          | Shunt       |  |  |  |
| 4          | + Vout      |  |  |  |
| 5          | – Vout      |  |  |  |
| 6          | Shield      |  |  |  |



Power is 12.5VDC to 26VDC.


**Note:** Output is differential. Do not connect – Vout to ground. Cable shield should be grounded on one end, either the IAA power side or instrument side to avoid potential ground loops.

## **Bandwidth Setup**

**IMPORTANT NOTE:** Do not connect the device to the power supply when the power supply is already on.

| SW4 BANDWIDTH |          |   |          |                     |  |  |
|---------------|----------|---|----------|---------------------|--|--|
| 1             | 2        | 3 | 4        | BANDWIDTH (Hz)      |  |  |
| <b>A</b>      | •        | • | •        | 100                 |  |  |
| •             | <b>A</b> | • | •        | 1,000               |  |  |
| •             | •        | • | •        | 10,000²             |  |  |
| •             | •        | • | <b>A</b> | 25,000³             |  |  |
| •             | •        | ▼ | •        | 50,000 <sup>4</sup> |  |  |

SW4 can be used to set the bandwidth from 100 Hz to 50,000 Hz. Confirm the bandwidth is appropriate for your application.



**Note:** Increasing the bandwidth can increase the overall noise.

<sup>&</sup>lt;sup>2</sup> Only for sensitivity of 1.0 mV/V or greater

<sup>&</sup>lt;sup>3</sup> Only for sensitivity of 1.5 mV/V or greater

<sup>&</sup>lt;sup>4</sup> Only for sensitivity of 2.0 mV/V or greater

## **Setup Steps**

**IMPORTANT NOTE:** Do not connect the device to the power supply when the power supply is already on.

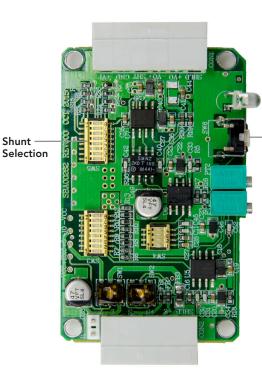
- Set SW 1 down for 10 VDC excitation or up for 5 VDC excitation. By default the IAA amplifier is set to 10 VDC at FUTEK.
- Set the gain DIP switch (SW3) to the appropriate gain level. By default the gain is set with switch 4 up for a 2 mV/V sensor. (Use our online gain setting Excel sheets on the <u>FUTEK support webpage</u> to find the appropriate gain DIP switch setting for your sensor's mV/V output.)
- With the sensor and IAA amplifier completely connected apply the 12.5 to 26 VDC.

**Note:** Adjusting the Span will affect any system calibrations. Adjusting the zero will not.

- 4. With no load on the sensor adjust the Zero potentiometer until the output is as close to 0 VDC as possible.
- With a known load placed on the sensor adjust the Span potentiometer to as close to the appropriate output level as possible. For example, 10 VDC for a full load output.
- Remove the load and reconfirm the zero load output, and then reapply the known load and re-confirm the span output.



FUTEK's online calibration tool allows you to retrieve a summary of your sensor's calibration data: http://www.futek.com/calibrationData.aspx


#### Calibrating using Shunt:

- Hold down the Shunt button.
- Adjust the Span of the IAA amplifier until the output correlates with the value chosen for the shunt.

A remote shunt is available on the power connection side, and can be activated with 5 to 26 VDC.



The online Shunt calculator on the FUTEK website can be used to calculate an estimated result from a shunt resistance, or to calculate a resistance needed for a certain sensor output value when shunted. http://www.futek.com/shuntcalc.aspx



Shunt

Shunt

**Button** 

10 Thomas, Irvine, CA 92618 USA

Tel: (949) 465-0900 Fax: (949) 465-0905



