

µCAN.1.ti-IP65

Manual for the Temperature Acquisition Module Version 1.10

Order No.: 12.10.901

MicroControl GmbH & Co. KG Lindlaustr. 2 c D-53842 Troisdorf Fon: +49 (0) 2241 / 25 65 9 - 0 Fax: +49 (0) 2241 / 25 65 9 - 11 http://www.MicroControl.net

Inhaltsverzeichnis

1.	Safety	Regulations	. 6
	1.1	General Safety Regulations	. 6
2.	Operati	ion of μCAN.1.ti-IP65	. 8
	2.1	Overview	. 8
3.	Project	Planning	10
	3.1		10
	3.2	Module Layout	10
	3.3	Operation Area	11
	3.4	Maximum System Layout	12
	3.5	Case Dimensions.	14
4.	Assem	bly and Disassembly	15
	4.1	Safety Regulations	15
	4.2	General Information	16
	4.3	Assembly	17
	4.4	Disassembly	18
5.	Installa	tion	19
	5.1	Potential Basics	19
	5.2	EMC Considerations	20
	5.2.1	Grounding	21
	5.2.2	Shielding of cables	21
	5.3	Power Supply	23
	5.4	CAN-Bus	24
	5.5	Address Selection	25
	5.6	Baudrate Selection	27
	5.7	Termination	29
6.	Signal Inputs 30		
	6.1	Connection of Pt100	31
	6.2	Connection of thermo couple	35
7.	Diagno	sis	36
	7.1	Position of LEDs	36
	7.2	Diagnosis in Pre-Operational State	37

Inhaltsverzeichnis

	7.2.1	Diagnosis in Pre-Operational State
	7.2.2	Diagnosis in Operational State
8.	CANop	en Protocol 39
	8.1	Introduction
	8.2	Network Management 40
	8.3	SDO-Commands 42
	8.3.1	SDO-Error Messages 44
	8.4	Communication Profile Objects 45
	8.4.1	Error-Register 46
	8.4.2	Device Name
	8.4.3	Hardware Version 48
	8.4.4	Software Version 48
	8.4.5	Store All Parameters 49
	8.4.6	Load Default Parameters 50
	8.4.7	Identity Object 51
	8.5	Device Profile Objects 52
	8.5.1	Sensor-Type 53
	8.5.2	Auto-Calibration 54
	8.5.3	Operating Mode
	8.5.4	Physical Unit 56
	8.5.5	Number of Decimal Digits 57
	8.5.6	Input State 58
	8.5.7	Field Value (A/D-Converter) 58
	8.5.8	Scaling first field value 59
	8.5.9	Scaling first process value 60
	8.5.10	Scaling second field value 61
	8.5.11	Scaling second process value
	8.5.12	Offset 62
	8.5.13	Process Value 62
	8.6	Heart Beat Protocol 64
	8.6.1	Producer Time
	8.7	PDO-Communication

Inhaltsverzeichnis

	8.7.1	Transmit PDO 1	67
	8.7.2	Transmit PDO 2	69
	8.7.3	Mapping Parameter	71
	8.7.4	Synchronisation Message	72
	8.8	Emergency Message	73
	8.8.1	Changing of Emergency ID	75
9.	Append	lix	76
	9.1	Technical Data µCAN.1.ti-IP65	76
	9.2	Calculation table dezimal in hexadezimal	78
	9.3	EMI Certificate	80

_	Remarks on CE-conformance of µCAN-modules
	µCAN-modules which have CE-conformance label, have passed test specifications of EU-criteria 89/336/EWG "Electromagnetic Emission and Immunitiy" and standardized European norms (EN).
	Papers of declaration for EU-conformance, according to Art.10 of EN, are available at:
	MicroControl GmbH & Co. KG Lindlaustr. 2 c D-53842 Troisdorf Germany
	MicroControl reserves the right to modify this manual and/or pro- duct described herein without further notice. Nothing in this ma- nual, nor in any of the data sheets and other supporting documentation, shall be interpreted as conveying an express or implied warranty, representation, or guarantee regarding the sui- tability of the products for any particular purpose. MicroControl does not assume any liability or obligation for damages, actual or otherwise of any kind arising out of the application, use of the pro- ducts or manuals.
	The products described in this manual are not designed, inten- ded, or authorized for use as components in systems intended to support or sustain life, or any other application in which failure of the product could create a situation where personal injury or death may occur.
	© 2002 MicroControl GmbH & Co. KG, Troisdorf No part of this documentation may be copied, transmitted or stored in a retrieval system or reproduced in any way including, but not limited to, photography, magnetic or other recording me- ans, without prior written permission from MicroControl GmbH & Co. KG.

Safety Regulations

General Safety Regulations

	1. Safety Regulations
	Symbol Explanation
Attention !	This symbol marks a paragraph which explains possible danger. This danger might cause a damage to the system / plant or da- mage to personnel.
Note	This symbol marks a paragraph which contains useful informati- on for the work with the device or which gives just a hint.
	1.1 General Safety Regulations
Attention !	Please read the following chapter in any case, because it contains important information about the secure handling of electrical devices.
	This paragraph gives important information about the conditions of use. It was written for personnel which is qualified and trained on electrical devices.
	Qualified and trained personnel are persons who fulfil at least one of the following conditions:
	• You know the safety regulations for automated machines and you are familiar with the machine.
	• You are the operator for the machine and you have been trai- ned on operation modes. You are familiar with the operation of devices described in this manual.
	• You are responsible for setting into operation or service and you are trained on repairing automated machines. In addition you are trained in setting electrical devices into operation, to connect the earthing conductor and to label these devices.
Terms of use	The devices described in this manual can only be used for the mentioned applications. Other devices used in conjunction have to meet the safety regulations and EMI requirements.

1

Safety Regulations

General Safety Regulations

Attention !	To ensure a trouble free and safe operation of the device please take care of proper transport, appropriate storage, proper assem- bly as well as careful operation and maintenance.
Hints for Installati- on	Please take care to observe the actual local safety regulations.
	If devices are used in a fixed machine without a mains switch for all phases or fuses, this equipment has to be installed. The fixed machine must be connected to safety earth.
	If devices are supplied by mains please take care that the selec- ted input voltage fits to the local mains.
Safety Notice	If devices are supplied by 24V DC, this voltage has to be isolated from other voltages.
	The cables for power supply, signal lines and sensor lines must be installed in a way that the device function is not influenced by EMI.
	Devices or machines for industrial automation must be construc- ted in a manner that an unintentional operation is impossible.
Attention !	By means of hardware and software safety precautions have to be taken in order to avoid undefined operation of a automated machine in case of a cable fraction.
	If automated machines can cause damage of material or person- nel in case of a malfunction the system designer has to take care for safety precautions. Possible safety precautions might be a li- mit switch or locking.

Operation of µCAN.1.ti-IP65

Overview

	2. Operation of µCAN.1.ti-IP65
	2.1 Overview
µCAN.1.ti - Tempe- rature Acquisition	The μ CAN.1.ti is the right module for temperature acquisition with sensors of type Pt100 and thermo couples J/K. The linearized temperatures are transmitted via CAN bus .

Pt100 sensors can be connected in 2-wire, 3-wire and 4-wire technology.

The modules are designed for applications where temperatures are measured over a long distance. This reduces the costs for long and expensive thermo couple wire.

Overview

	The development in automation towards decentralized "intelli- gent" systems makes the communication between these compo- nents quite important.
	Modern automated systems require the possibility to integrate components from different manufacturers. The solution for this problem is a common bus system.
	All these requirements are fulfilled by the μ CAN.1.ti module. The μ CAN.1.ti runs on the standard fieldbus CAN.
	Typical applications for the μ CAN.1.ti are industrial automation, transportation, food industry and environmental technology.
	The µCAN.1.ti runs with the protocol
	according to the device profile DSP-404. Other protocol stacks are available on request.
compatible	By means of modern chip technology the protocol CANopen was implemented. This gives you the possibility for flexible use of the μ CAN.1.ti module.
space saving and compact	The μ CAN.1.ti is designed for heavy duty applications. The aluminium cast ensures protection class IP65. The compact, space saving case gives the freedom to mount the module in many places.
inexpensive and service friendly	The quick and easy integration of the μ CAN.1.ti in your applica- tion reduces the development effort. Costs for material and per- sonnel are reduced. The easy installation makes maintenance and replacement quite simple.

Project Planning

Introduction

3. Project Planning

3.1 Introduction

The chapter Project Planning contains information which are important for the system engineer. These information include case dimensions and conditions of use.

3.2 Module Layout

The following figure shows the top view of the μ CAN.1.ti PCB. Use the figure to identify the terminal blocks, LED's and DIP-switches.

Operation Area

3.3 Operation Area

The μ CAN.1.ti is a robust field module for acquisition and linearization of temperatures in industrial applications. Temperatures can be acquired by different kinds of sensors. The following sensors can be connected to the μ CAN.1.ti:

- Thermo couple type J,
- Thermo couple type K,
- Pt100 resistor

The module gathers the analogue signals of temperature sensors and performs a linearization. The temperature is transmitted in degree Celsius via CAN bus. Fraction of sensor (thermo couple / Pt100) and short circuit of sensor (Pt100) are detected.

The PCB is incorporated in a robust case of protection class IP65. The μ CAN.1.ti is suited for mounting outside the switch cabinet. The idea behind that concept is to acquire the signals direct at the test point. Long wires for the sensors are not longer necessary. Influence of EMI is reduced.

The μ CAN.1.ti needs four wires for connection to the power supply and CAN bus. Special CAN bus cables can be ordered from MicroControl (refer to Ordering Information).

Maximum System Layout

3.4 Maximum System Layout

For an operational system at least one network manager (or supervisor system) must be connected to the bus. This network manager might be a PLC or PC equipped with a CAN card. Every μ CAN.1.ti module is an active node.

A CAN network may have one network manager and up to 127 network slaves (refer to Fig. 2, "Maximum System Layout"). Every module gets a unique address, which is set up via a DIP switch. The CAN bus is connected through the μ CAN modules. The last module in the network must be terminated by a termination switch (refer to "Termination" on page 29).

Project Planning

Maximum System Layout

The maximum cable length depends on the selected baudrate. The following table shows the maximum cable length recommended by CiA^{*}. These distances can be realized with the μ CAN.1.ti.

Baudrate in kBit/s	Cable Length in m
1000	25
800	50
500	100
250	250
125	500
100	650
50	1000
20	2500
10	5000

Table 1: Dependence of baudrate from cable length

*CAN in Automation Internationial Users and Manufacturers Group e.V. MicroControl is a member of CiA and joins the working groups for development of new protocols and standards.

Case Dimensions

3.5 Case Dimensions

The case dimensions of the module are given in the drawing below. The high protection class IP65 of the module allows an assembly at places with a harsh environment. It is possible to mount the module inside a switching cabinet as well as direct on a machine. Please check the technical data section for detailled information about maximum environment conditions.

Assembly and Disassembly

Safety Regulations

	4. Assembly and Disassembly
	4.1 Safety Regulations
Attention !	This paragraph gives important information about the conditions of use. It was written for personnel which is qualified and trained on electrical devices.
	Qualified and trained personnel are persons who fulfill at least one of the following conditions:
	• You know the safety regulations for automated machines and you are familiar with the machine.
	• You are the operator for the machine and you have been trai- ned on operation modes. You are familiar with the operation of devices described in this manual.
	• You are responsible for setting into operation or service and you are trained on repairing automated machines. In addition you are trained in setting electrcal devices into operation, to connect the earthing conductor and to label these devices.
Terms of Use	The devices described in this manual can only be used for the mentioned applications. Other devices used in conjuction have to meet the safety regulations and EMI requirements.
Attention !	To ensure a trouble free and safe operation of the device please take care of proper transport, appropriate storage, proper assem- bly as well as careful operation and maintenance.

4

General Information

	4.2 General Information
Assembly	The μ CAN modules should be assembled on an at least 2 mm thick mounting plate or direct in the plant. The module is fixed with 2 screws of type M4, which are plugged into the bottom part of the case. You find an assembly template in the appendix of this manual.
Power Supply	You need a cable with two conductors for power supply. The ca- ble is inserted from the right side into the case, where the termi- nals for power supply are located. However it makes sense to use a cable with four conductors in order to run the CAN bus over the same cable.
Earthed Conductor	The non-fused earthed conductor is connected at the terminal outside the case (refer to Fig. 4, "Connection of earthed conductor"). The non-fused earthed conductor may not lead inside the case because of EMI.
Attention !	The non-fused earthed conductor may not lead inside the μ CAN case and may not be connected to a terminal inside the case.
	PE
Attention !	<i>Fig. 4: Connection of earthed conductor</i> Operation of the μCAN module is only permitted with closed case.

Assembly and Disassembly

Assembly

	4.3 Assembly
	Assembly is performed with help of the template attached to this manual. With the template all necessary bore-holes for screws of type M4 can easily be drilled. If the module is directly fixed to the machine make sure to take the proper drill size for tapping.
Note	When fixing several modules at the same place please make sure to leave some area for the PG screws.
	For a quick identification of the modules during operation you may use paper sticker. Please write down the ID that is set for the module.
Note	Please make sure that the last node that is installed to the CAN bus is terminated with a resistor (refer to "Termination" on page 29).

Disassembly

4.4 Disasseml	b	ly
---------------	---	----

Please make sure to disconnect the power supply from the device first!

Open the cover from the module and remove the temperature sensors first. Now you can remove the cables for CAN bus and power supply from the terminals.

Unlock the fixing screws and remove the module. For a safe transport remove the PG screws and close the cover again.

Installation

Potential Basics

5. Installation

5.1 Potential Basics

The potential environment of a system that is realized with μ CAN modules is characterized by following features:

- The CAN bus potential is isolated from the power supply.
- The electronic of the µCAN modules is isolated from the power supply.
- All µCAN modules have a separate power supply.
- All I/O signals are optically isolated from the CAN bus potential.

EMC Considerations

5.2 EMC Considerations

EMC (Electromagnetic Compatibility) is the ability of a device to work in a given electromagnetic environment without influencing this environment in a not admissible way.

All μ CAN modules fit these requirements and are tested for electromagnetic compatibility in a EMC laboratory. However a EMC plan should be done for the system in order to exclude potential noise sources.

Noise signals can couple in different ways. Depending on that way (guided wave propagation or non-guided wave propagation) and the distance to the noise source the kinds of coupling are differentiated:

DC Coupling

If two electronic circuits use the same conductor we speak of a DC coupling. Noise sources are in that case: starting motors, frequency converters (switching devices in general) and different potentials of cases or of the common power supply.

Inductance Coupling

An inductance coupling is given between two current-carrying conductors. The current in a conductor will cause a magnetic field which induces a voltage in the second conductor (transformer principle). Typical noise sources are transformer, power cables and RF signal cables.

Capacitive Coupling

A capacitive coupling is given between two conductors which have a different potential (principle of a capacitor). Noise sources are in that case: parallel running conductors, static discharge and contactors.

RF Coupling

A RF coupling is given when electromagnetic fields hit a conductor. This conductor works like an antenna for the electromagnetic field and couples the noise into the system. Typical noise sources are spark plugs and electric motors. Also a radio set might be a noise source.

To reduce the impact of noise sources please take care to follow the basic EMC rules.

Installation

EMC Considerations

	5.2.1 Grounding
General	All inactive metal plates must be grounded with low impedance. By this step all elements of the system will have the same poten- tial.
	Please take care that the ground potential never carries a dange- rous voltage. The grounding must be connected to the safety earth.
Grounding of µCAN-Modules	The μ CAN modules are grounded by non-fused earthed conductor at the terminal outside the case ("Connection of earthed conductor" on page 16). The ground potential may not be connected to a terminal inside the case.
Grounding of other modules	If μ CAN modules are shipped in a plastic case they have to be grounded with a metal tape.
	5.2.2 Shielding of cables
	If noise is coupled to a cable shield it is grounded to safety earth via the metal cover. The cable shields have to be connected to the safety earth with low impedance.
Cable Types	For installation of the μ CAN module you should only use cable with a shield that covers at least 80% of the core. Do not use cable with a shield made from metallized foil because it can be damaged very easy and has not a good shielding.
Cable Layout	In general the cable shield should be grounded on both ends. The cable shield should only be grounded on one end if an at- tenuation is necessary in the low frequency range. The cable shield can not be grounded on both ends for temperature sen- sors. The grounding on one end of the cable is necessary if
	 there is no contact to the safety earth possible, analogue signals with only a few mV or mA are transmitted (temperature sensors).
Attention !	The shield of the CAN bus cable may never lead inside the μ CAN case. Never connect the shield to one of the terminals inside the case.
	For a fixed operation the shield of the CAN bus cable should be connected to safety earth. The CAN cable must meet the requirements of ISO11898. The

Installation

EMC Considerations

	cable must have the following features:
	 Impedance, measured between two signal lines, in the range of 108-132 Ohm (nom. 120 Ohm)
	 Specific Resistance of 70 mOhm/m
	 Specific Signal Delay of 5 ns/m
	The CAN bus cable is connected to the μ CAN module via screw- type terminals inside the case. For the pinning of the terminal re- fer to "Connection of the CAN Bus" on page 24 of this manual.
Attention !	Do not confuse the signal lines of the CAN bus, otherwise com- munication between the modules is impossible.

Power Supply

5.3 Power Supply

The modules of the μ CAN family are designed for industrial applications. The nominal supply voltage is 24 V DC. By means of a DC/DC converter the electronic of the module is isolated from the supply voltage. The supply voltage must be within the range from 8 V DC to 60 V DC. For further information please refer to the technical data of the module.

The input is protected against confusing the poles.

Terminals for Power Supply

Please make sure not to confuse the poles when connecting to the power supply. The positive supply is connected to the terminal V+. The two V+ terminals are internally linked to feed the supply through the module. The negative supply is connected to the terminal GND. The two GND terminals are also internally linked.

Fig. 5: Connection of power supply

Attention !

A cable shield may not lead into the housing or may not be connected to a terminal inside the housing. Cable shields have to be connected to the terminals outside the housing ("Connection of earthed conductor" on page 16).

CAN-Bus

5.4 CAN-Bus

The two wires of the CAN bus are connected to the appropriate terminals. Please make sure that the CAN bus is fed from the right side into the module and keep the wires as short as possible. The terminals for CAN-H respective CAN-L are internally linked. By this the CAN bus can be connected through the module.

To reduce the influence of EMI please take care that the CAN bus cable does not cross the wires of the sensor.

Terminals for CAN

The CAN bus conductor with positive potential must be connected to the terminal C-H (CAN High). The CAN bus conductor with negative potential must be connected to the terminal C-L (CAN Low).

Address Selection

If you confuse the poles the communication on the bus will not be Attention ! possible. The shield of the CAN bus may not lead into the housing and may not be connected to a terminal inside the housing. Cable shields have to be connected to the terminals outside the housing (refer to Fig. 4 on page 16). If you use a Sub-D connector with 9 pins (according to CiA standard), the conductor CAN-H is connected to pin 7 and the conductor CAN-L is connected to pin 2. 5.5 Address Selection Adress selection and baudrate setting is done with two DIP-switches which you can see in the following two figures. RG Modul-ID Modul ID Fig. 7: Adress setting Address selection of the µCAN modules is done with the DIP switche, marked "Modul-ID" which are located at the top of the printed board. Selection of the address may be done with a small screw driver. The address of the module (so called Node ID) is set by one byte. The selected address is read during initialization of the module, after Power-on or Reset. The module runs with the selected Node ID until a new Node ID is selected and a Reset is performed (via CAN) or the power supply is switched off.

Address Selection

Address range
As mentioned before, the Node ID is coded with one byte. In CA- Nopen networks the highest address is limited to 127, which me- ans the last switch (label 8) has no function.
Also, a Node ID of 0 is not allowed. If a Node ID of 0 is selected, the μ CAN module will stay in the initialization routine. The module will only run through the initialization process if the address is within the range from 1 to 127.
The decimal address range from 1 to 127 corresponds to the he- xadecimal notation 01h to 7Fh. Every node within a CANopen network must have a unique ID. Two nodes with the same ID are not allowed.
You find a table with calculation for switch positions for Node IDs from 1 to 31 in the appendix of this manual.

Installation

Baudrate Selection

5.6 Baudrate Selection

Baudrate selection of the μ CAN modules is done with a single HEX-rotation coder, which is located at the lower site of the printed circuit board. Selection of the baudrate may be done with a small screw driver.

Installation

Baudrate Selection

The supported baudrates of the μ CAN module are given in the following table. The values are recommended by the CiA. The table also shows the position of the DIP switch.

Baudrate (kBit/s)	Value	DIP- setting
1000	9	1001
800	8	0001
500	7	1110
250	6	0110
125	5	1010
100	4	0010
50	3	1100
20	2	0100
10	1	1000

Table 2: Baudrate Settings

Termination

5.7 Termination

The last module in the network has to be terminated with a resistor of 120 ohms. That means the last module is not reflecting back power and the communication can not be disturbed.

Termination of the μ CAN modules is easy to perform. Simply set the switch shown in the figure to position "ON". Then there will be internally a resistor of 1200hm connected between the terminal block C_L and C_H.

Fig. 9: Termination of CAN Bus

Please make sure that only the devices at both ends of a CAN bus are terminated.

0

Attention !

	6. Signal Inputs
	This chapter of the manual will show you how different kinds of temperature sensors and analogue standard signals are connected to the μ CAN modules. Please keep the basics of EMI rules in mind when planning the wiring. Only proper wiring and EMI precautions make sure that the module runs without trouble.
	Marking of Channels
	The μ CAN.1.ti has one input. The terminal is marked with P1, +, - and G1. The terminal with + and - belongs to the differential si- gnal input, the terminals with the marking P1 and G1 are for ad- ditional sensor (power) supply ie. Pt100 or strain gauge.
Attention !	All sensor types or analogue signals may only be connected in power off state in order to prevent a damage of the electronic.

Connection of Pt100

CAN.1.ti works with Pt100 sensors as S. Sensors of type Pt100 can be con- ys.
00 resistor and the electronic is done ssible wiring for Pt-100" on page 32). res have an resistance, which is swit- esistor. As a result the Pt100 resistor res are added. That means a higher present temperature is measured. To ance of the wires must be compensa-
sistor is used in a 3-wire version. For ional wire is connected to the Pt100 neasuring circuit is present. The se- sed as reference. For a 3-wire Pt100 ductor resistance and the influence of n be compensated. However the am- uence all three wires.
ent is fed into the resistance via two voltage drop over the resistor is mea- uctors. A compensation is not neces- input the resistance of the conductor The voltage drop over the Pt100 resi- e conductor resistance.
connection are shown in Figure 10. on to channel 1 is displayed.

Connection of Pt100

Connection of Pt100

Connection of Pt100

Limitation of 3-wire Pt100

The μ CAN.1.ti does not have a compensation for 3-wire Pt100 resistors, so the resistance of the conductor and temperature of the conductor will have an influence on the measured value. However this influence is half as bad as you would use 2-wire Pt100 resistors. In practical applications a cable length of up to 5 meters (3-wire Pt100; 0,2 mm² copper) can be used which has an impact on the measured temperature of less than 0,5K (absolute).

Connection of thermo couple

6.2 Connection of thermo couple

Temperature sensors of type thermo couple can be connected very easy. No additional links have to be installed. The sensor is connected to the terminals "+" and "-" of the desired measurement channel.

Please take care not to confuse the poles when connecting the thermo couple.

The following figure shows the connection of a thermo couple to measurement input 1.

Fig. 12: Connection of Thermo Couple

Attention ! The shield of the temperature sensor may not lead inside the case in order to avoid EMI. The shield has to be connected outside the case to the appropriate terminal.

Diagnosis

Position of LEDs

7. Diagnosis

7.1 Position of LEDs

All modules of the μ CAN family have LEDs to display the operating state and to signalize an error state. The light of the LEDs can be seen through beam waveguides on top of the housing (refer to "Case Dimensions" on page 14).

The modules incorporate a bi-color LED named with "Status". The following figure shows the position of the LEDs.

Fig. 13: Position of LEDs on the module
Diagnosis

Diagnosis in Pre-Operational State

7.2 Diagnosis	in Pre-Operational State
7.2.1 Diagnosi	is in Pre-Operational State
After Power-on th ment and turned	he LED will be turned on and off for a short mo- on again.
Status of LED	Meaning
quick flashing (2 times per second)	Device is in Pre-Operational state
off	Supply voltage not OK, Hardware not OK
flashing red and green	Supply voltage OK, but no CAN bus connec- tion (the module is waiting for a ACK-pulse from a nother CAN node) maybe the wrong baudrate is selected or any other physical error on the bus
flashing red	Inputs are left open or wrong sensor type

The default setting for sensor type is thermo couple type J (refer to "Sensor-Type" on page 53).

Diagnosis in Pre-Operational State

7.2.2 Diagnosis in Operational State

With help of the LED the communication on the CAN bus as well as the state of the sensor inputs can be supervised.

Status of LED	Meaning
quick flashing (2 times per second) green	Device is in Pre-Operational state
slow blinking (1Hz) green	Device is in Operational State and there is communication with the device via CAN bus
on, green	Device is in Operational State and there is no communication
flashing red	Inputs are left open or wrong sensor type

Introduction

8.1 Introduction
This chapter provides the user information on how to connect the modules of the μ CAN-series to a CANopen-Master (CANopen-Manager). This CANopen-Master can be a PLC, a PC with CAN Card or any other CAN-Device with master functionality.
This documentation provides the actual implemented functior and services of the μ CAN-devices.
For further information on the protocol you can also contact us v e-mail: info@MicroControl.net
CANopen related www-sites:
http://www.can-cia.de (CAN in Automation Organization)
http://www.MicroControl.net
Literature:
CiA Draft Standart 404 (CANopen) CAN in Automation (CiA) International Headquarters Am Weichselgarten 26 D-91058 Erlangen
CiA Magazine CANopen - Lean Networking for Industrial Automation Published April 1998
CAN - Controller Area Network Wolfhard Lawrenz (Editor) Hüthig, 1994 ISBN 3-7785-2263-7

Network Management

8.2 Network Management

After power-up the μ CAN-module transmits a "Boot-Up Message". This message does not contain any information except the "Heart Beat"-ID which is by default 700h (1793d) + module-address.

Predefined Connection Set COB-ID = Function Code (4 Bit) + Module-ID (7 Bit)

SDO-requests by the master have the message identifier 1536d (600h) + module-address. The slave answers with a message identifier 1408d (580h) + module-address.

Object	COB-ID (decimal)
Network Management	0
SYNC	128
EMERGENCY	129 - 255
PDO 1 (tx)	385 - 511
PDO 2 (tx)	641 - 767
SDO (rx)	1409 - 1535
SDO (tx)	1537 - 1663
Heart Beat Protocol	1793 - 1919

Table 3: Pre-defined connection set

Network Management

Start Node	Start Node							
	ID	DLC	Byte 1	Byte 2				
	0	2	01h	Node				
	Node = modu	ıle address, 0	= all modules	6				
	By transmittir set in Operat PDO-commu message).	ng the "Start N ional mode. T nication (e.g.	lode" comma This means th sending all	nd the CAN-ne nat the node c process valu	ode will be an handle es in one			
Stop Node	Stop Node							
	ID	DLC	Byte 1	Byte 2				
	0	2	02h	Node				
Reset Node	tional-mode.				ne-Opera-			
	ID	DLC	Byte 1	Byte 2				
	0	2	81h	Node				
	Node = modu	ıle address, 0	= all modules	6				
	On receiving the "Reset Node" command the CAN-node will do an internally software-triggered hardware reset. This will force the node to initialize the complete hardware and also will genera- te the sending of the "Boot-Up Message" (see before).							

SDO-Commands

8.3 SDO-Commands

The μ CAN.1.ti-IP65 supports the below listed SDO-Indices:.

Index	Name	Page
1000h	Device Profile	45
1001h	Error Register	46
1005h	COB-ID SYNC-Message	72
1008h	Manufact. Device Name	47
1009h	Manufact. Hardware Version	48
100Ah	Manufact. Software Version	48
1010h	Store Parameters	49
1011h	Restore Default Parameters	50
1014h	Emergency ID	75
1017h	Producer Time / Heart Beat	64
1018h	Identity Object	51
1800h	1 st Transmit PDO Parameter	67
1801h	2 nd Transmit PDO Parameter	69
1A00h	1 st Transmit PDO Mapping	71
1A01h	2 nd Transmit PDO Mapping	71
6110h	Sensor Type	53
6111h	Autocalibration	54
6112h	Operating Mode	55
6131h	Physical Unit Process Value	56
6132h	Decimal Digits Process Value	57
6150h	Analog Input Status	58
7100h	Analog Input Field Value	58
7120h	Input Scaling 1 Field Value	59
7121h	Input Scaling 1 Process Value	60
7122h	Input Scaling 2 Field Value	61
7123h	Input Scaling 2 Process Value	61

SDO-Commands

	Index Name							Pag	Page				
	7124	h	Input	Offset					62				
	7130	7130hAnalog Input Process Value62											
	Structure of SDO-Commands												
	ID	ID DLC Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8											
		8 CMD Index Sub- Indx Data											
	The ca "Netwo	alculat ork Ma	ion of nagem	the ID nent" o	for a n page	SDO 9 40.	messa	ge is	shown	under			
	Maste Slave	omma r wants answe	na Byte s to rea rs on t	e (CMI ad from he rea	ر nas n Slave d-requ	e e est	40h 42h	mean	ing:				
	Maste Slave	r wants answe	s to wr rs on t	ite to S he writ	lave e-requ	iest	22h 60h						
Note	The by byte fi	/te ord/ rst (Int	er for ti el form	he fielc at).	ls "Inde	ex" and	d "Data	a" is lea	ast sigr	nificant			
Attention !	The m mands lead to	ninimur s must o an ur	n time be gre predic	e delay ater th tible de	betwo an 20r evice s	een tw ns. Fa status.	io suce aster co	ceedin ommur	ig SDC nicatior	D-com- n might			

SDO-Commands

8.3.1 SDO-Error Messages

The access to an unsupported object (index) leads to an SDO-Error Message. This SDO-Error Message has the following format:

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
	8	80h	Inc	lex	Sub- Indx	Additior	al Code	Error Code	Error Class

The identifier as well as the index and sub-index correspond to the SDO request.

The error messages may have the following contents:

Error Class	Error Code	Additional Code	Meaning
05h	04h	00h 01h	Client/Server command specifier not va- lid or unknown
06h	01h	00h 00h	Attempt to read a write only object
06h	01h	00h 01h	Attempt to write a read only object
06h	09h	00h 11h	Sub-index does not exist
06h	02h	00h 00h	Object does not exist

8.4 Communication Profile Objects

The index range from 1000h to 1FFFh describes the Communication-Profile for CANopen devices. These indices provide all parameters which concern the CANopen-network. This area is common for all CANopen devices.

Device Profile By a read-access on Index 1000h the Device Profile can be polled.

> **Example:** Read-Access, Module-Adress = 2, Index 1000h, Sub-Index = not supported within this Index

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1538	8	40h	00	10h	00	00	00	00	00

As answer you will receive from the μ CAN.1.ti is:

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1410	8	42	00	01h	00	94h	01h	02h	00

Byte 5 + Byte 6 = 0194h = 404d (Device Profile Number) Byte 7 + Byte 8 = 0002h = 2 (Additional Information) - Analog Input.

Index 1000h is Read-Only, no Sub-Indices are supported. By writing on this Index (or reading a Sub-Index unequal to "0") you will receive a SDO-Communication Error (see "SDO-Error Messages" on page 44).

	8.4.1	Erro	⁻ Reg	ister								
Error Register	By a read-access on Index 1001h the state of the error register can be polled.											
	Example: Read-Access, Module-Adress = 2, Index 1001h, Sub- Index = not supported within this Index											
	ID	ID DLC Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8										
	1538	8	40h	01h	10h	00	00	00	00	00		
	As ans lowing	swer ye errors	ou will s are si	receivo upporto	e the E ed:	rror sta	atus of	the de	evice. T	he fol-		
Generic Error	Error 1: Bit 0 in Byte 5 is set. The Generic Error is generated by the signal input of the μ CAN.1.ti. This error means: Break or Short-Circuit of the connected sensor, positive or negative overload on one or more channels.											
Communication Er- ror	Error The Conthe tion Er 73.	2: Bit 4 ommu CAN- rrors c	4 in By nicatio netwo an be	te 5 is n Erro rk. A c seen	set. r will b complet under	e gene te list d "Emer	erated of supp gency	by (ph ported Messa	ysical) Comm age" or	errors iunica- n page		
	i is Re s Index a SDO age 44)	ead-Or ((or re -Comn).	ily, no ading nunicat	Sub-lı a Sub- tion Er	ndices Index ror (se	are s unequa e "SD	upporte al to "C O-Erro	ed. By)") you r Mes-				

	8.4.2	Devi	ce Na	me								
Manufacturer De- vice Name	By a Name	By a read-access on Index 1008h the Manufacturer Device Name can be polled.										
	Exam Index	ple: R = not s	ead-Ao suppor	ccess, ted wit	Modul hin this	e-Adres Index	ess = 2 <	2, Index	x 1008	h, Sut		
	ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8		
	1538	8	40h	08h	10h	00	00	00	00	00		
	As an	swer y	ou will	receiv	e from	the µ0	CAN.1.	ti:				
			Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8		

Byte 5 = 31h represents ASCII =1 Byte 6 = 2Eh represents ASCII =. Byte 7 = 74h represents ASCII =t

Byte 7 = 69h represents ASCII =i

Index 1008h is Read-Only, no Sub-Indices are supported. By writing on this Index (or reading a Sub-Index unequal to "0") you will receive a SDO-Communication Error (see "SDO-Error Messages" on page 44).

8

	8.4.3	Hard	ware	Versi	on						
Manufacturer Hardware Version	By a read-access on Index 1009h the Manufacturer Hardware Version can be polled.										
	Exam Index	ple: Ro = not s	ead-Ac support	ccess, ted wit	Modul hin this	e-Adre s Index	ess = 2	, Index	k 1009	h, Sub-	
	ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	
	1538	8	40h	09h	10h	00	00	00	00	00	
	As an: ASCII-	swer y -coded	ou will Hardv	receiv vare ve	ve fron ersion (n the µ (see "D	uCAN. ⁻ Device	1.ti a r Name"	nessa(on pa	ge with ge 47).	
	Index 1009h is Read-Only, no Sub-Indices are supported. By writing on this Index (or reading a Sub-Index unequal to "0") you will receive a SDO-Communication Error (see "SDO-Error Messages" on page 44).										
	8.4.4	Softv	vare \	Versi	on						
Manufacturer Software Version	By a Name	read-a can be	iccess e polle	on In d.	dex 1	00Ah	the M	anufac	turer l	Device	
	Exam Index	ple: Ro = not s	ead-Ac support	cess, ted wit	Module hin this	e-Adre s Index	ss = 2,	, Index	100Ał	n, Sub-	
	ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	
	1538	8	40h	0Ah	10h	00	00	00	00	00	
	As ans ASCII- Index writing will red sages	swer y -coded 100Ah I on thi ceive a " on pa	rou will I Hardv n is Re s Index a SDO age 44)	vare ve ead-Or (or re Comn	ve fron ersion (aly, no eading nunicat	n the µ (see "D Sub-li a Sub- tion Er	JCAN. Device ndices -Index ror (se	1.ti a r Name" are s unequ e "SD	nessag on pag upporte al to "(O-Erro	ge with ge 47). ed. By)") you r Mes-	

	8.4.5 Sto	re All Parameters	
Store Parameter	By writing of stored on t The default	on Index 1010h all parameters in t the module. Parameters are store t parameter values are shown in th	he following table a d on an EEPROM. le list below.
	Index	Name	Default
	6110h	Sensor Type	Thermo J
	6112h	Operating Mode	Channel On
	7120h	Input Scaling 1 Field Value	0
	7121h	Input Scaling 1 Process Value	0
	7122h	Input Scaling 2 Field Value	0
	7123h	Input Scaling 2 Process Value	0
	7124h	Input Offset	0

Emergency ID

1017h	Producer Time / Heart Beat	0 ms
1005h	SYNC-ID	80 h
1800h	PDO 1 - Parameter	PDO active, ID 180h + Modul- Address, Trans- missiontype 1
1801h	PDO 2 - Parameter	PDO <u>not</u> active, ID 280h + Modul-Address, Transmissi- ontype 1

Table 4: Stored Parameters

1014h

The storing will be generated by transmitting the code "save" as ASCII in the data area of Index 1010h. The message has the following format:

Example: Write-Access, Module-Adress = 2, Index 1010h, Sub-Index = 01h

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1538	8	22h	10h	10h	01h	73h	61h	76h	65h

80h + ID

Communication Profile Objects

DLC 8 Load	Byte 1 60h	Byte 2 10h	Byte 3 10h	Byte 4 01h	Byte 5	Byte 6	Byte 7	Byte 8
8 Load	60h	10h	10h	01h	00	00		
Load						00	00	00
	I Deta	ult Pa	aramo	eters				
iting or alues o ramete	n Index of the c ers" on	1011h lefault page 4	n the de param 19.	efault p eters c	arame an be	eters ca found	an be l under	oadeo "Stor
bading in the le follo	will be data-a wing ex	gener rea of kample	ated by Index	y trans 1011h.	mitting The n	the connessa	ode "lo ge has	ad" a: to loc
i ple: W = 01h	/rite-Ac	cess,	Module	e-Adre	ss = 2,	, Index	10111	n, Sub
DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
8	22h	11h	10h	01h	6Ch	6Fh	61h	64h
nswer	(after s	succes	sful loa	ading)	you wi	ll recei	ve is:	
DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
8	60h	11h	10h	01h	00	00	00	00
he def "new"	proces ault pa param	aramet eters c	overw ers. So on EEP	ROM	e value iser de by usir	es of t oesn't ng Inde	has to has to ex 1010	o stor Oh.
	alues of alues of ramete bading in the e follow ple: W = 01h DLC 8 nswer DLC 8 oading he def "new"	alues of the c alues of the c rameters" on bading will be in the data-a e following ex ple: Write-Ac = 01h DLC Byte 1 8 22h nswer (after s DLC Byte 1 8 60h bading proces he default pa "new" param	Iting on index 1011ralues of the defaultalues of the defaultrameters" on page 4bading will be generin the data-area ofe following examplein the data-area ofe data-area of	In the default parameters on page 49. Dading will be generated by in the data-area of Index	In the default parameters of alues of the default parameters of rameters on page 49. Dading will be generated by trans in the data-area of Index 1011h. e following example. Imple: Write-Access, Module-Adreaters = 01h DLC Byte 1 Byte 2 Byte 3 Byte 4 8 22h 11h 10h 01h nswer (after successful loading) DLC Byte 1 Byte 2 Byte 3 Byte 4 8 60h 11h 10h 01h ording process will overwrite the he default parameters. So the u "new" parameters on EEPROM I	Iting on index for in the default parameters can be alues of the default parameters can be rameters" on page 49.Dading will be generated by transmitting in the data-area of Index 1011h. The ne following example.In the data-area of Index 1011h. The ne following example.Imple: Write-Access, Module-Adress = 2, = 01hImple: Write-Access, Module-Adress = 2, = 01h <t< td=""><td>Index 1011h the default parameters callues of the default parameters can be found arameters" on page 49.Dading will be generated by transmitting the call in the data-area of Index 1011h. The message following example.Imple: Write-Access, Module-Adress = 2, Index = 01hDLCByte 1Byte 2Byte 3Byte 4Byte 5822h11h10h01h6Ch6Fhnswer (after successful loading) you will receinDLCByte 1Byte 2Byte 3Byte 4Byte 5Byte 6860h11h10h01h0000Dading process will overwrite the values of the default parameters. So the user doesn't "new" parameters on EEPROM by using Index</td><td>Index 101 In the default parameters can be found under alues of the default parameters can be found under rameters" on page 49. Dading will be generated by transmitting the code "lot in the data-area of Index 1011h. The message has e following example. Imple: Write-Access, Module-Adress = 2, Index 1011h = 01h DLC Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 8 22h 11h 10h 01h 6Ch 6Fh 61h nswer (after successful loading) you will receive is: DLC Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 8 60h 11h 10h 01h 6Ch 6Fh 61h nswer (after successful loading) you will receive is: DLC Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 8 60h 11h 10h 01h 00 00 00 odding process will overwrite the values of the EE he default parameters. So the user doesn't has to "new" parameters on EEPROM by using Index 101h</td></t<>	Index 1011h the default parameters callues of the default parameters can be found arameters" on page 49.Dading will be generated by transmitting the call in the data-area of Index 1011h. The message following example.Imple: Write-Access, Module-Adress = 2, Index = 01hDLCByte 1Byte 2Byte 3Byte 4Byte 5822h11h10h01h6Ch6Fhnswer (after successful loading) you will receinDLCByte 1Byte 2Byte 3Byte 4Byte 5Byte 6860h11h10h01h0000Dading process will overwrite the values of the default parameters. So the user doesn't "new" parameters on EEPROM by using Index	Index 101 In the default parameters can be found under alues of the default parameters can be found under rameters" on page 49. Dading will be generated by transmitting the code "lot in the data-area of Index 1011h. The message has e following example. Imple: Write-Access, Module-Adress = 2, Index 1011h = 01h DLC Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 8 22h 11h 10h 01h 6Ch 6Fh 61h nswer (after successful loading) you will receive is: DLC Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 8 60h 11h 10h 01h 6Ch 6Fh 61h nswer (after successful loading) you will receive is: DLC Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 8 60h 11h 10h 01h 00 00 00 odding process will overwrite the values of the EE he default parameters. So the user doesn't has to "new" parameters on EEPROM by using Index 101h

	8.4.7 Ident	ity Obje	ct	
Identity Object	Index 1018h des several p	contains t	he so called "Identity Object" w s.	hich inclu-
	The Index ha	is the follo	wing structure:	
	Index	Sub- Index	Parameter	Access
	1018h	0	Number of Subindices	ro
		1	Vendor ID	ro
		2	Product Code	ro
		3	Revision Number	ro
		4	Serial Number	ro
	ro - Read On	ly, r / w - F	Read / Write	
Vendor ID Product Code	The vendor II the manufact the CiA (http the ID = 0E h	D is an uni turer of the p://www.ca n.	ique number which can be used e module. The numbers are ma an-cia.de) worldwide. MicroCo	d to identify anaged by introl has
	case represe logue.	ents the or	rdering number of the MicroCo	ntrol cata-
Revision Number	The revision represents th the lower 16	number co e revision bits repres	onsits of two 16bit values. The hi of the CANopen parts of the so sents the general firmware relea	igher 16bit ftware and ase.
Serial Number	The serial nu the coded da ded. So on re	imber is a ite, on whi equest of t	lso manufacturer specific and r ch the module was checked an his Index as answer you will ge	represents d calibrat- et:
	Byte1: Day (I Byte2: Month Byte3: Year (Byte4: counte	Format DE n (Format I (Format Y er number	D) (hex) MM) (hex) Y) (hex) r (hex)	

8.5 Device Profile Objects

In this section you will find all device profile specific indices for the μ CAN-modules. These indices are implemented according to the DS-404 device profile.

Index	Name	Page
6110h	Sensor Type Selected sensor input	53
6111h	Autocalibration Start of calibration	54
6112h	Operating Mode Switching ON/OFF of input	55
6131h	Physical Unit Process Value	56
6132h	Decimal Digits Process Value	57
6150h	Analog Input Status	58
7100h	Analog Input Field Value Direct ADC value	58
7120h	Input Scaling 1 Field Value	59
7121h	Input Scaling 1 Process Value	60
7122h	Input Scaling 2 Field Value	61
7123h	Input Scaling 2 Process Value	61
7124h	Input Offset	62
7130h	Analog Input Process Value	62

Table 5: Device specific indices (DS-404)

8.5.1 Sensor-Type

Index 6110h

Writing (Selecting a different/new Sensor) and reading (Monitoring of the selected Sensor) of sensor inputs is done with index 6110h. The object has got the following structure.

Index	Sub- Index	Parameter	Access
6110h	0	Number of supported channels	ro
	1	Parameter channel 1	r/w

ro - Read Only, r / w - Read / Write

A write access to index 6110h does always change the parameters on four channels at one time. The user can not use different sensor types with one module.

The possible sensor types which are supported are shown in the following list:

Parameter	Sensor Type
01 h	Thermocouple Type J (Fe-CuNi)
02 h	Thermocouple Type K (NiCr-NiAl)
1E h	Pt 100

Default parameter on first boot-up is Thermocouple Type J.

After first power-up of the device the user can directly take values with Thermocouple Type J. No further definitions or parameters have to be written.

Example: Instead of Thermo J the Sensors should be Pt100 on all of the four channels. The message has to look like this:

Write Access, module address = 2, Index 6110h, Sub-Index = 1

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1538	8	22h	10h	61h	01h	1Eh	00	00	00

Device Profile Objects

The answer (after successful selection of the new sensor) you
will receive is:

	ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
	1410	8	60h	10h	61h	01h	00	00	00	00
Attention !	Now the nels. E ify the In case ject) the ror Me The ch be sto user (s	he mo Sy read select e of ar ne mod essage nanged red on see "S	dule w ling fro ed Ser acces lule wil s" on p s" on p tore Al	orks w m Indensor-Ty ss-erro ll send bage 4 meter c OM au I Parar	rith Pt1 ex 6110 /pe. r (e.g. an SD 4). of the ir utomation neters	00 on)h, Sut trying f O-Erro nput sig ically. ⁻ " on pa	all of t p-Index to write or Mess gnal / S This ha age 49)	the fou < 1 the e on a r sage (s Sensor as to be).	r input user ca read-ou see "SI • Type e done	-chan- an ver- nly ob- DO-Er- will not by the
	8.5.2	Auto	-Calil	bratic	on					
Index 6111h	A write on the	e opera input.	ation to	index	6111	n will s	tart the	e calibr	ation r	outine
Attention !	The m not ca	odule librate	µCAN. the de	1.ti is e vice.	calibra	ted in t	factory	. The e	end-us	er may

8

	8.5.3	Oper	ating	Mod	е							
Index 6112h	Writin nels is ture.	Writing and Reading of Operating Mode from the different chan- nels is done with Index 6110h. The object has the following struc- ture.										
	Inde	x	Sub- Inde	x P	arame	eter			Ac	cess		
	6112	ו	0	N	umber	of suppo	rted cha	Innels	ro			
			1	Pa	aramete	er chann	el 1		r / v	N		
	the fo	llowing	list			which a		ported	are sr			
						Channe) l Off					
	01 h					Normal	Operati	on				
Example:	By de tures power You d input Write	fault the on the r-up. o not w off, you access	ne cha input o vant to u have s, Mod	nnel is channo use th to sen ule-ID Byte 2	s turne el can ne inpu d the = 2, Ir Byte 3	ed on. be me ut for yc followin ndex = 0 Byte 4	That m asured our app og mes 6112h Byte 5	neans I just a blicatio sage: Byte 6	the te fter th n. To t	mpera- e initial curn the		
	1538	8	22h	12h	61h	01h	00	00	00	00		
			I	1								

Device Profile Objects

As answer you will receive the folloing message from the module μ CAN.1.ti:

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1410	8	60h	12h	61h	01h	00	00	00	00

The input is now turned off. If this input has caused an error, this error will be reset now (emergency message with error reset code). When requesting data from that input you will always receive the value 0.

Attention ! A change of this parameter will not be stored inside the EEPROM automatically. This has to be done manually by the user (see "Store All Parameters" on page 49).

8.5.4 Physical Unit

Index 6131h By a read-access on Index 6131h the Physical Unit of the Process Value can be requested. This object is read-only and has the following structure:

Index	Sub- Index	Parameter	Access
6131h	0	Number of Inputs	ro
	1	Physical Unit for Input 1	ro

ro - Read Only, r / w - Read / Write

Read the Physical Unit for input 1. Read Access, Module-ID = 2, Index = 6131h

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1538	8	40h	31h	61h	01h	00	00	00	00

The answer to this request on input 1 is:

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1410	8	42h	31h	61h	01h	10h	30h	00	00

The data bytes 5 + 6 hold the value according to DS-404 with the physical unit. Here in the example you see 3010h - Degree Cel-

Example:

Device Profile Objects

sius									
8.5	.5 Num	ber o	f Dec	imal	Digit	5			
6132h By a of th and	a read-ac ne Proces has the	ccess c ss Valu followir	on Inde ue can ng stru	ex 6132 be rec ucture:	2h the queste	Numb d. This	er of D objec	ecima t is rea	l Digits Id-only
Inc	dex	Sub- Index	k P	arame	ter			Ac	cess
613	32h	0	N	umber o	f Inputs			ro	
		1	N	umber D	ecimal	Digits fo	or Input	1 ro	
			5						
ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
ID 141	DLC 0 8	Byte 1 42h	Byte 2 32h	Byte 3 61h	Byte 4 01h	Byte 5 01h	Byte 6	Byte 7 00	Byte 8

8.5.6 Input State

Index 6150h

By a read-access on Index 6150h the Input State of the device can be requested. This object is read-only and has the following structure:

Index	Sub- Index	Parameter	Access
6150h	0	Number of Inputs	ro
	1	State for Input 1	ro

ro - Read Only, r / w - Read / Write

A read-access to this index (refer to "Physical Unit" on page 56) will cause the following answer:

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1410	8	42h	50h	61h	01h	02h	00	00	00

Data byte 5 holds the value 02h, i.e. there is a positive overload on channel 1.

The data byte 5 of the CAN message represents the input state in the following manner:

Parameter	Status
00 h	Measuring Value valid
01 h	Measuring Value not valid
02 h	Positive Overload
04 h	Negative Overload

If the measured value is within the input range, the request will return the value 00h, i.e. process value is valid.

8.5.7 Field Value (A/D-Converter)

Index 7100h

By a read-access on Index 7100h the value of the A/D-converter (field value) can be requested. This is a raw value, without any linearization / computation. This object is read-only and has the

Device Profile Objects

| following structure:

	Index		Sub- Index	¢	Pa	arame	ter			Ac	cess	
	7100h		0		Number of Inputs					ro	ro	
			1		A/D-value for Input 1					ro		
	ro - Re	ad On	lly, r / v	v - I	Rea	ad / Wi	rite					
	A read will cau	-acces use the	ss to th e follov	nis i ving	nde 3 ar	ex (refensiver:	er to "F	Physica	al Unit"	on pa	ge 56)	
	ID	DLC	Byte 1	Byte	e 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	
	1410	8	42h	00)h	71h	01h	LBh	HBh	00	00	
	Byte 4 ple. In I Format	holds byte 4 t (Low Scali	the nu and 5 f -Byte f ng fir	mb the irst)	er c val). fie	of the i ue of th Id val	nput cł ne A/D I ue	nannel -conve	, i.e. 1 erter is	in this given i	exam- n Intel-	
Change of scaling	By cha values culated (Shorto	nging for the l by th cuts: P	the va e devic e follov rocess	alue ce c wing s Va	⊧s o :an g rc alu€	of object be sca putine: e = PV	cts 712 aled. Ti , Field	20h to he sca Value	7124h ling wi = FV)	the P Il then	rocess be cal-	
	PV (7	130h)	= Offs	set ((712	24h) + 2	2nd PV 2nd FV	(7123) (7122)	n) — 1st n) — 1st	PV (7 FV (7	<u>121h)</u> 120h)	
	On sel will be an offs	ecting no sca et to tl	param aling to ne prod	the the	ers f e pro s va	from ol ocess alue by	bjects value. y chan	7120h It is po ging ol	to 712 ssible oject 7	24h to to only 124h.	0 there v select	
Attention !	A char PROM (see "S	ige of auton Store A	these natical All Para	par ly. ⁻ ame	am This ter:	eters v s has t s" on p	will not o be d bage 49	t be ste lone m 9).	ored in anuall <u>y</u>	iside ti y by th	ne EE- le user	
Index 7120h	Index 7 the firs	7120h t field	has re value	ead can	an be	d write chang	e acces ged. Th	ss. By ne inde	selecti ex has	ng this the fo	s index llowing	

Device Profile Objects

otru	oturo
รแน	ciure

Index	Sub- Index	Parameter	Access
7120h	0	Number of channels	ro
	1	Field value (16 bit)	r / w

ro - Read Only, r / w - Read / Write

On a read acces to this object, the module will answer with the following message:

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1410	8	42h	20h	71h	01h	LBh	HBh	00	00

Byte 5+6 contains the field value data as 16bit.

8.5.9 Scaling first process value

Index 7121h

Index 7121h has read and write access. By selecting this index the first process value can be changed. The process value always has the actual physical unit number of decimal digits. The index has the following structure:

Index	Sub- Index	Parameter	Access
7121h	0	Number of channels	ro
	1	Process value (16 bit)	r / w

ro - Read Only, r / w - Read / Write

On a read acces to this object, the module will answer with the following message:

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1410	8	42h	21h	71h	01h	LBh	HBh	00	00

Byte 5+6 contains the process value data as 16bit.

8.5.10 Scaling second field value

Index 7122h

Index 7122h has read and write access. By selecting this index the second field value can be changed. The index has the following structure:.

Index	Sub- Index	Parameter	Access
7122h	0	Number of channels	ro
	1	Field value (16 bit)	r / w

ro - Read Only, r / w - Read / Write

On a read acces to this object, the module will answer with the following message:

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1410	8	42h	22h	71h	01h	LBh	HBh	00	00

Byte 5+6 contains the field value data as 16bit.

8.5.11 Scaling second process value

Index 7123h

Index 7123h has read and write access. By selecting this index the second process value can be changed. The process value always has the actual physical unit and number of decimal digits. The index has the following structure:

Index	Sub- Index	Parameter	Access
7123h	0	Number of channels	ro
	1	Process value (16 bit)	r / w

ro - Read Only, r / w - Read / Write

On a read acces to this object, the module will answer with the following message:

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1410	8	42h	23h	71h	01h	LBh	HBh	00	00

Byte 5+6 contains the process value data as 16bit.

8.5.12 Offset

Index 7124h Index 7124h has read and write access. By selecting this index the offset to the process value can be changed. The offset always has the actual physical unit and number of decimal digits. The index has the following structure:

Index	Sub- Index	Parameter	Access
7123h	0	Number of channels	ro
	1	Offset (16 bit)	r/w

ro - Read Only, r / w - Read / Write

On a read acces to this object, the module will answer with the following message:

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1410	8	42h	23h	71h	01h	LBh	HBh	00	00

Byte 5+6 contains the offset data as 16bit.

8.5.13 Process Value

Index 7130h

By a read-access on Index 7130h the process value can be requested. This is a linearized value (degree Celsius). This object is read-only and has the following structure:

Index	Sub- Index	Parameter	Access
7130h	0	Number of Inputs	ro
	1	Process Value for Input 1	ro

ro - Read Only, r / w - Read / Write

A read-access to this index (refer to "Physical Unit" on page 56) will cause the following answer:

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1410	8	42h	00h	71h	01h	LBh	HBh	00	00

8

	Byte 4 holds the number of the input channel, i.e. 1 in this example. In byte 4 and 5 the process value given in Intel-Format (Low-Byte first, 16-Bit Signed Integer).
Attention !	In case of an input signal error the value will be $0xEEEE_{hex}$. At the same time the objects 1001h ("Error-Register" on page 46) and 6150h ("Input State" on page 58) will hold an appropriate error code. Also an emergency message will be sent by the device in that case (refer to "Emergency Message" on page 73).

Heart Beat Protocol

	8.6 Heart Beat Protocol									
	On switching on the Heart Beat protocol any other node on the CAN-bus can survey the sending node (Heart Beat producer). This technique is used to monitor the active nodes on the bus for safety reasons. For example nodes which send data autonomiosly only every 2 minutes, it can be better for the master to survey the node in the meantime.									
Heart Beat ID	The Identifier for the Heart Beat producer is set to 700h + module address. The ID can not be changed.									
	The de Index 1	lay foi 014h.	r sendi	ng the	Haert	Beat m	nessag	je is se	elected	under
	8.6.1	Prod	ucer	Time						
Index 1014h	Within messag ture:	this li ges ca	ndex tl an be (he time change	er for ed. The	the tra e Index	nsmis k has t	sion of the foll	f Hear lowing	t Beat struc-
	Ind	ex			Para	ameter	•		Ac	cess
	101	4h		Tii	mer in I	ms (16	bit)		r	/ w
	ro - Re By defa lue gre ges au	ad On ault the ater 5 tonom	ly, r / v e timer ms the iosly.	v - Rea is set modul	nd / Wr to 0. V e will b	ite Vhen cl begin to	hangin o send	ig the t Heart	imer to Beat m) a va- nessa-
Note	The timer is a ms-timer with multiples of 5ms. Any value unequal to a multiple of 5 written to the module will be rounded. The value is a 16-bit value. If for example written to the module a value of 112(ms), this value will be changed to 110(ms).									
	112(ms	s), this	value	will be	chang	ged to	110(m	s).		
Example:	The He guratio	s), this eart Be n has	eat time to look	will be er has < like th	chang to be o nis.	ged to	110(m: ed to 1	s). s. The	ID for	confi-
Example:	The He guratio Write p	s), this eart Be n has arame	eat time to look eter, M	will be er has (like th odule-l	to be o nis. D = 2,	ged to change Index	110(m ed to 1 1014h	s). s. The	ID for	confi-
Example:	The He guratio Write p	s), this eart Be n has arame DLC	eat time to look eter, M Byte 1	will be er has like th odule-l Byte 2	chang to be iis. D = 2, Byte 3	ged to change Index Byte 4	110(m ed to 1 1014h Byte 5	s). s. The Byte 6	ID for Byte 7	confi- Byte 8

Data bytes 4+5 contain the value 03E8h which represents a pro-

Heart Beat Protocol

ducer time of 1000ms.

The answer you will receive from the module is:

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1410	8	60h	0Ch	10h	00	00	00	00	00

Attention !

A change of these parameters will not be stored inside the EE-PROM automatically. This has to be done manually by the user (see "Store All Parameters" on page 49).

8.7 PDO-Communication The PDO (Process Data Objects) communication service is a method to receive all temperature values from the node in one CAN message. The µCAN.1.ti uses a fixed PDO-Mapping, i.e. the contents of the PDO cannot be modified. The PDO is requested via a SNYC-message. PDO communication with the CAN-module is only possible in Note **Operational Mode.**

8.7.1 Transmit PDO 1 Index 1800h The object 1800h defines communication parameters for the first transmit PDO. The PDO can only be used in Operational Mode. The µCAN.1.ti uses a fixed PDO-Mapping. With this first PDO the temperature values (degree Celsius) can be requested. Attention ! The PDO may not be requested faster than 20ms by the SYNCservice. It is recommended to request the PDO not faster than 40ms, because new temperature values for the input is available every 40ms. The object has the following structure: Sub-Index **Parameter** Access Index 1800h 0 Largest Sub-Index supported ro 1 Identifier of PDO 1 (COB-ID) r/w 2 r/w Transmission Type 3 reserved 4 reserved 5 Timer (16 bit) r/w ro - Read Only, r / w - Read / Write The value on Sub-Index 1 defines the identifier that is used for PDO 1. The 32-bit value has the following structure:

Bit 31	Bit 30 - 11	Bit 10 - 0
0 / 1	0	ID 11 bit

The default identifier is 180h + module-address.

In order to enable the PDO the most significant bit (Bit 31) must be set to 0. In order to disable the PDO the most significant bit must be set to 1.

In the default setting the PDO is active (Bit 31 = 0).

Transmission Type	The transmission type (Sub-Index 2) defines the transmission charactar of the PDO. The μCAN.1.ti three different types of transmission.							
	By writing to Sub-Index 02 the transmission type can be selected. The following types are supported.							
	Transmission Type	Description						
	0	azyclic synchron The module sends on every SYNC- Message						
	1 - 240 d	zyclic synchron The module sends on every n-th SYNC- Message (with n = 1 240)						
	254 d	Manufacturer specific The module sends autonomiosly every x ms. The value for x can be selected in Sub-Index 05.						
	If selected Transm the value for trans the module will be Node"-command fr	ission Type 254d (manufacturer specific) mission delay (Sub-Index 05) is greater gin to transmitt PDOs after receicing a om the master.) and 5ms, "Start					
Timer	As mentioned before selected under Sub ples of 5ms. Any we module will be rour written to the module ged to 110(ms).	As mentioned before, the transmission timer for PDOs can be selected under Sub-Index 05. The timer is a ms-timer with multiples of 5ms. Any value unequal to a multiple of 5 written to the module will be rounded. The value is a 16-bit value. If for example written to the module a value of 112(ms), this value will be changed to 110(ms).						
	Only in Operational Mode the module will send PDOs with timer delay.							
Attention !	A change of these PROM automatica (see "Store All Par	parameters will not be stored inside the Ily. This has to be done manually by the ameters" on page 49).	e EE- e user					

8.7.2 Transmit PDO 2

Index 1801h The object 1801h defines communication parameters for the second transmit PDO. The PDO can only be used in Operational Mode.

The μ CAN.1.ti uses a fixed PDO-Mapping. With this second PDO the A/D-converter values (raw values) can be requested.

Attention ! The PDO may not be requested faster than 20ms by the SYNCservice. It is recommended to request the PDO not faster than 40ms, because new temperature values for the input is available every 40ms.

The object has the following structure:

Index	Sub- Index	Parameter	Access
1801h	0	Largest Sub-Index supported	ro
	1	Identifier of PDO 2 (COB-ID)	r/w
	2	Transmission Type	r / w
	3	reserved	
	4	reserved	
	5	Timer (16 bit)	r/w

ro - Read Only, r / w - Read / Write

The value on Sub-Index 1 defines the identifier that is used for PDO 1. The 32-bit value has the following structure:

Bit 31	Bit 30 - 11	Bit 10 - 0
0 / 1	0	ID 11 bit

The default identifier is 280h + module-address.

In order to enable the PDO the most significant bit (Bit 31) must be set to 0. In order to disable the PDO the most significant bit must be set to 1.

In the default setting of the PDO is **not active** (Bit 31 = 1).

Transmission Type	The transmission type (Sub-Index 2) defines the transmission charactar of the PDO. The μCAN.1.ti three different types of transmission.							
	By writing to Sub-Index 02 the transmission type can be selected. The following types are supported.							
	Transmission Type	Description						
	0	azyclic synchron The module sends on every SYNC- Message						
	1 - 240 d	zyclic synchron The module sends on every n-th SYNC- Message (with n = 1 240)						
	254 d	Manufacturer specific The module sends autonomiosly every x ms. The value for x can be selected in Sub-Index 05.						
	If selected Transm the value for trans the module will be Node"-command fr	ission Type 254d (manufacturer specific) mission delay (Sub-Index 05) is greater gin to transmitt PDOs after receicing a om the master.) and 5ms, "Start					
Timer	As mentioned before selected under Sub ples of 5ms. Any we module will be rour written to the module ged to 110(ms).	As mentioned before, the transmission timer for PDOs can be selected under Sub-Index 05. The timer is a ms-timer with multiples of 5ms. Any value unequal to a multiple of 5 written to the module will be rounded. The value is a 16-bit value. If for example written to the module a value of 112(ms), this value will be changed to 110(ms).						
	Only in Operational Mode the module will send PDOs with timer delay.							
Attention !	A change of these PROM automatica (see "Store All Par	parameters will not be stored inside the Ily. This has to be done manually by the ameters" on page 49).	e EE- e user					

	8.7.3	8.7.3 Mapping Parameter									
Index 1A00h	The o The µ the ter	The object 1A00h defines the PDO mapping for the first PDO. The μ CAN.1.ti uses a fixed PDO-Mapping. The first PDO holds the temperature values (degree Celsius).									
	The C	AN me	essage	for the	e first F	PDO h	as the	followi	ng stru	icture:	
	Transı	mit-PD	00 1: P	roces	s Valu	es					
	ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	
	PDO1 ID	8	HB Input 1	LB Input 1							
		•						•	·		
Index 1A01h	The ol The μ holds	oject 1 CAN. ⁻ the da	A01h d 1.ti use ta from	lefines es a fi the A	the P[xed Pl /D-con	DO ma DO-Ma iverter	pping f apping. (raw d	or the The ata).	secono secono	d PDO. d PDO	

The CAN message for the first PDO has the following structure:

Transmit-PDO 2: Field Values

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
PDO2 ID	8	HB Input 1	LB Input 1						

8

	8.7.4 Syr	nc	hronisation Message						
Index 1005h	The object 1005h defines the identifier for the SYNC-message. On reception of a message with this identifier the transmission of PDOs is initiated (refer to "PDO-Communication" on page 66).								
	The object has the following structure:								
	Index		Parameter		Access				
	1005h		ID (32 bit)		r / w				
	ro - Read (Onl	y, r / w - Read / Write						
	The 32-bit value has the following structure:								
	Bit 31	В	it 30 - 11	Bit 10 - 0					
	1	0		ID 11 bit					
	The default identifier is 80h in order to ensure a high priority of the SYNC-message.								
	sumes SY	NČ	-message, refer to CANope	en DS-301).				
Attention !	A change o automatica "Store All F	of tl ally Par	nis parameter will not be sto . This has to be done ma ameters" on page 49).	pred inside nually by 1	the EEPROM the user (see				
Emergency Message

Note

8.8 Emergency Message

Emergency objects are triggered by the occurrence of a device internal error situation and are transmitted from an emergency producer on the device.

An emergency is different from a SDO Error Message. The last one only holds the access error to the object dictionary, whereas an emergency display a severe hardware/software failure.

The emergency identifier has the value 128d + module-address. The emergency message has the following structure::

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
	8	Error	Code	00h	М	anufactur	er Specifi	c Error Fie	eld

Supported Error Codes:

Error Code	Meaning
00 00h	No Error
FF 00h	Device Specific Error
81 00h	Communication Error

Device Specific Er-
rorPt100: fraction of sensor and short-circuit of sensor
Thermo couple: short-circuit of sensor

Byte 4 (first byte of the Manufacturer Specific Error Field) holds the information about the specific error type.

b7	b6	b5	b4	b3	b2	b1	b0
			Input 1				Input 1
	Short-Circu	it of Sensor			Fraction	of Sensor	

 $\begin{array}{lll} \mbox{Communication Er-} & \mbox{The } \mu \mbox{CAN.1.ti supports the generation of communication errors.} \\ \mbox{For this error type the internal state of the CAN controller (Infine- on C505) is monitored.} \end{array}$

CANopen Protocol

Emergency Message

	Descr	Description of byte 5:								
	b7	D7 D6 D5 D4			53 52 51 50					
			Status							
	Status	S:								
Bus Off Status	b7 - B The C reache	b7 - Bit is set The CAN controller is in bus-off state because the error counte reached the maximum value.								
Warning Status	b6 - Bit is set The CAN controller is in warning status.									
	Error Code:									
	0h - No error									
	1h - Stuff Error More than 5 consecutive bits with the same logical value.									
	2h - Form Error Wrong format of the CAN message.									
	3h - Acknowledgement Error No dominant bit inside the acknowledgement slot (no further node on the bus).									
	4h - Bit 1 Error Node tried to send a 1, but a 0 was received.									
	5h - Bit 0 Error Node tried to send a 0, but a 1 was received.									
	6h - C The C	6h - CRC Error The CRC-code of the received message was wrong.								
	7h - not used									

8

CANopen Protocol

Emergency Message

	8.8.1 Chan	iging of Eme	rgency ID						
Index 1014h	By accessing this object the ID of the Emergency message can be changed. The object has the following structure:								
	Index		Parameter		Access				
	1014h		ID(32 bit)		r / w				
	ro - Read On	lly, r / w - Read	/ Write						
	The 32-bit va	alue contains the	e following settin	gs:					
	Bit 31/30	Bit 29	Bit 28 - 11	Bit 10 - 0					
	res.	0	0	ID 1	1 bit				
Attention !	By default the high priority f A change of f automatically "Store All Pa	e ID is set to 80h for the emergen this parameter w /. This has to b rameters" on pa	+ module addre cy messages. vill not be stored i e done manual ige 49).	inside the ly by the	EEPROM user (see				

Technical Data µCAN.1.ti-IP65

9. Appendix	
9.1 Technical Data	μCAN.1.ti-IP65
Technical Data	
Power Supply	
Supply Voltage	7 V DC - 60 V DC, reverse current protected
Power Consumption	typ. 350mW, max. 600mW (can be reduced by software to 125mW)
Optical isolation	Isolation between supply voltage and module electronic 500 VDC, Isolation between analogue input and supply voltage 500 VDC
Physical Interface	Terminal Block (2,5 mm ²)
CAN-Interface	
Baudrates	10 kBit/s to 1 MBit/s (according to CiA recommendation)
Maximum number of modules on the bus	127
Status on the bus	active node
Protocol	CANopen, DSP-404, other protocols on request
Specification	2.0A and 2.0B
Physical Interface	Terminal Block (2,5 mm ²)
Environment	
Operating Tempera- ture	-40°C +85°C (-40°C +110°C on request)
Storage Tempera- ture	-50°C +110°C
Humidity	15-95%
Diagnosis / bi-color l	_ED
Operation / CAN- Communication	LED on (green), LED blinking (green)

Technical Data µCAN.1.ti-IP65

Error	LED blinking (red) 1 Hz
General	
Dimensions	64 x 98 x 34 mm
Weigth	ca. 280g
Sensor-Input	
Sensor Types	Thermo couple type J,K,L (other types on request) Pt100, 4-wires, fully compensated Strain gauge, 350 Ohm, full bridge Pressure transducer
Sensor supply	5V DC, 10V DC (Option) 0,8mA
Standard Signal Types	0-10 V 0-20mA, 4-20mA
Physical Interface	Terminal Block (2,5 mm ²)
Resolution	16 bit for all types of signals, conversion times shorter than 5ms (200Hz) are converted with 12 bit
EMC	
Electromagnetic immunity	according to EN 50082-2
Electrostatic discharge	8 kV , air discharge
	4 kV, contact discharge
	according to EN 61000-4-2
Electromagnetic fields	10 V/m, according to ENV 50204
Burst	5 kHz, 2 kV, according to EN 6100-4- 4
Conducted RF- Disturbance	10 V, according to EN 61000-4-6
Electromagnetic emission	according to EN 50081-2,

Calculation table dezimal in hexadezimal

dez	hex	dez	hex	dez	hex	dez	hex
0	00	16	10	32	20	48	30
1	01	17	11	33	21	49	31
2	02	18	12	34	22	50	32
3	03	19	13	35	23	51	33
4	04	20	14	36	24	52	34
5	05	21	15	37	25	53	35
6	06	22	16	38	26	54	36
7	07	23	17	39	27	55	37
8	08	24	18	40	28	56	38
9	09	25	19	41	29	57	39
10	0A	26	1A	42	2A	58	ЗA
11	0B	27	1B	43	2B	59	3B
12	0C	28	1C	44	2C	60	3C
13	0D	29	1D	45	2D	61	3D
14	0E	30	1E	46	2E	62	3E
15	0F	31	1F	47	2F	63	3F

9.2 Calculation table dezimal in hexadezimal

Calculation table dezimal in hexadezimal

dez	hex	dez	hex	dez	hex	dez	hex
64	00	80	50	96	60	112	70
65	41	81	51	97	61	113	71
66	42	82	52	98	62	114	72
67	43	83	53	99	63	115	73
68	44	84	54	100	64	116	74
69	45	85	55	101	65	117	75
70	46	86	56	102	66	118	76
71	47	87	57	103	67	119	77
72	48	88	58	104	68	120	78
73	49	89	59	105	69	121	79
74	4A	90	5A	106	6A	122	7A
75	4B	91	5B	107	6B	123	7B
76	4C	92	5C	108	6C	124	70
77	4D	93	5D	109	6D	125	7D
78	4E	94	5E	110	6E	126	7E
79	4F	95	5F	111	6F	127	7F

EMI Certificate

9.3 EMI Certificate **ELEKLUFT GmbH** EMV-Zentrum Justus-von-Liebig-Straße 18 D-53121 Bonn int 49 (0)228 / 6681 - 558 Tel: Fax: int 49 (0)228 / 6681 - 792 Prüfberichtnummer/Report No.: 0050/99 Seite/Page: 1/23 Prüfbericht über die Störaussendung und -beeinflussung elektronischer Geräte Report on the Electromagnetic Emission and Immunity of electronic equipment Prüfvorschriften: EN 50081-2:1993 Teile/Parts: Test Specifications: EN 55011 EN 50082-2:1995 Teile/Parts: EN 61000-4-2, EN 61000-4-3, ENV 50204, EN 61000-4-4, EN 61000-4-6 MicroControl GmbH & Co. KG Auftraggeber: Josef-Kitz-Str. 9 Customer: 53840 Troisdorf Prüfgegenstand: uCAN.1.ti/ai Equipment tested: S/N: 070699023 26.07.1999 Eingangsdatum: Incoming Date: S/E EMV-Zentrum Prüfende Abteilung: S/E EMC-Centre Testing Department: Reß Prüfer: Gierlach Test Engineer: Prüfort: Bonn Test Location: 26.07.1999 Prüfdatum: Date of Test: keine Bemerkungen: none Remarks: Bestanden Prüfergebnis: Test Result: Approved Qualitätssicherung **EMV-Zentrum** Quality Assurance **EMC-Centre**

Das Prüfergebnis bezieht sich ausschließlich auf den oben genannten Prüfgegenstand und nicht auf das Verhalten der Serie. Vervielfältigungen, auch auszugsweise, nur mit schriftlicher Genehmigung des Prüflabors. Test results relate only to the item tested and described hereafter. This report shall not be reproduced completely or in parts without the prior written approval of the test laboratory.

X

Т